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Tay-Sachs Disease at the Subtype Level

Tay-Sachs disease (TSD) is a rare autosomal recessive

disorder causing progressive neurodegeneration due to

HEXA deficiency. Infantile, juvenile, and late-onset subtypes

are described based on the age of symptom onset.

Despite genotype variability between certain ethnicities, there

are well-established associations between common

mutations and subtypes. Limited published evidence is

available on prevalence for large regions of the world,

especially for the late-onset subtype, which may be

underdiagnosed. This prevents a realistic estimate of the

current disease burden. The objective of this study was to

develop an epidemiological model of the prevalence and

patient pool per TSD subtype at the global, regional, and

country levels.
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Studies selected after 

screening by 

title/abstract

99 Total TSD patients identified

1,088

TSD carriers identified

45,742

A data triangulation 

approach was used to 

combine evidence on 

carrier frequency, 

genotype, modifying 

factors, (birth) 

prevalence, survival, 

and onset from 

multiple sources.

Base-case birth prevalence used in the model (per 100k)

Infantile subtype Juvenile subtype Late-onset subtype

Birth prevalence calculation 

from carrier screening92 

Birth prevalence from 

referred cases study22

Birth prevalence from 

referred cases study6

Validation with referred 

cases (mostly Caucasian)
3, 18,19,20,21,22,26,30

Given uncertainty, a range of 

birth prevalence was used

0.29 0.07 0.20 – 0.30

Point prevalence was 

calculated and a 

deterministic sensitivity 

analysis was used to 

generate a range for 

the late-onset subtype, 

reflecting the 

uncertainty in birth 

prevalence. 

Results shown 

represent a 

conservative scenario 

(birth prevalence of 

0.20).

Articles identified through 

keyword search using 

MEDLINE/PubMed

251
Studies were screened for the potential to offer the best 

available evidence on model inputs
434

Subtype cases
Criteria for exclusion Criteria for inclusion

Animal/cell models Subtype frequency

Treatment effects only Subtype distribution

Focus on another disease Incidence, prevalence, onset

Symptom-based cohorts Survival/mortality

Single cases Screening/carrier data

Ethnicities’ risk17,22,32,50,92 Consanguinity risk102

Risk ratios calculated from available evidence 

for each subtype

Risk ratios calculated from available inbreeding 

coefficients for high-risk countries

Ethnicity matrix Screening factor92

Ethnicity matrix for key countries and regions 

was constructed from available population data

Carrier screening impact factor was integrated 

to capture lower risk in screened populations

Individual patient data was used to build onset and survival curves in 

STATA1,4,6,7,8,10,44,45,48,49,50,51,82,88,89,90,96,98. 

The curves were corrected based on UN income regions to account 

for differences in life expectancy between countries.

Key countries were selected based on available evidence, region 

representativity, and expected size of rare disease market.

For other countries, calculations were based on averages of 

the most populated countries in the region.
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This is the first reported epidemiological model of TSD at the subtype and country level. By combining limited evidence, the

estimates better capture the unmet need of the late-onset subtype. This method can be applied in other rare genetic diseases to

quantify uncertainty and inform clinical program planning and health economic modelling.
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*Upper range of late-onset birth prevalence (0.30) results in 
15,920 total cases of the late-onset subtype
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